VI 型 [その他]


その他:

i) 対数をとる (an > 0 を忘れずに)。
ii) Sn = Σk=1n ak を含むとき → an = Sn - Sn-1, n ≧ 2.
iii) 数学的帰納法


例題:

(1) a1 = 1, a2 = 2; .

(2) a1 = 1, an+1 = Sn + n + 1, 但し Sn = Σk=1n ak.


(1) a1, a2  > 0 で 「an > 0, an+1 > 0 ⇒ > 0」 だから数学的帰納法により ∀n(an > 0). 両辺の 2 (= a2) を底とする対数をとると (√ は 1/2 乗だから)

log2 an+2 = (1/2)log2 (an・an+1) = (1/2)(log2 an + log2 an+1)
2log2 an+2 = log2 an + log2 an+1
2log2 an+2 - log2 an - log2 an+1 = 0 … type III.

よって 2t2 - t - 1 = 0 と置く。 (2t + 1)(t - 1) = 0 より t = -1/2, 1.

先ず

log2 an+2 - log2 an+1 = (-1/2)(log2 an+1 - log2 an).
∴log2 an+1 - log2 an = (-1/2)n-1(log2 a2 - log2 a1) = (-1/2)n-1 … (a)

次に

log2 an+2 + (1/2)log2 an+1 = log2 an+1 + (1/2)log2 an.
∴log2 an+1 + (1/2)log2 an = log2 a2 + (1/2) log2 a1 = 1 … (b)

(b) - (a): (3/2)log2 an = 1 - (-1/2)n-1.
∴log2 an = (2/3)(1 - (-1/2)n-1).

.

(2) an+1 = Sn + n + 1 の番号を一つ下げて

an = Sn-1 + n, n ≧ 2.

辺々引算して

an+1 - an = Sn - Sn-1 + 1.
∴an+1 - an = an + 1, n ≧ 2.
∴an+1 = 2an + 1, n ≧ 2 … type I.

∴ an+1 + 1 = 2(an + 1), n ≧ 2.
∴an + 1 = 2n-2(a2 + 1) = 2n-2・4 = 2n.
(∵a2 = S1 + 1 + 1 = a1 + 2 = 3)

∴ an = 2n - 1 (この式は n = 1 の場合をも含む).


練習:

(1) a1 = 1, a2 = 3; an+2/an+1 = (an+1/an)2.

(2) Sn = -7 + 2n - an.


答:

(1) .

(2) an = -9/2n + 2. (hint: n = 1 の時 S1 = a1.)


次へ
漸化式の目次